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Abstract

We are concerned with multidimensional stochastic balance laws driven by Lévy processes. Using
bounded variation (BV) estimates for vanishing viscosity approximations, we derive an explicit continuous
dependence estimate on the nonlinearities of the entropy solutions under the assumption that Lévy noise
only depends on the solution. This result is used to show the error estimate for the stochastic vanishing
viscosity method. In addition, we establish fractional BV estimate for vanishing viscosity approximations
in case the noise coefficient depends on both the solution and spatial variable.
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1. Introduction

In this paper, we derive continuous dependence estimate based on nonlinearities for stochas-
tic conservation laws driven by multiplicative Lévy noise. Our problem of interest is a
stochastic partial differential equation (SPDE) and it is defined on a filtered probability space
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(Q, P, F, {.E}tzo), where the unknown u(t,-) is an L” (Rd)-valued predictable process that
satisfies the Cauchy problem

Lm0, x); ) N(dz,dr),  x ey,
u(0, x) = up(x), xeRY,

{du(t,x) +div, F(u(t, x))dt = || (1.1)

where Ty = R? x (0, T) with T > 0 fixed. The initial data uq(x) is a given function on R,
and F:Ri—> R isa given (sufficiently smooth) vector valued flux function (see Section 2 for
the complete list of assumptions). The right hand side of (1.1) signifies the Lévy noise term and
it is represented by a compensated Poisson random measure N (dz,dt) = N(dz,dt) — v(dz)dt,
where N is a Poisson random measure on R x (0, co) with intensity measure v(dz). The inte-
grand 1 (u, z) is a real valued function.

In the case n = 0, the problem (1.1) becomes a standard conservation law in R4 and its well-
posedness analysis has a very long tradition, going back to the 1950s. The question of existence
and uniqueness of solutions of conservation laws was first settled in the pioneering papers of
Kruzkov [15] and Vol’pert [17]. For a completely satisfactory well-posedness theory of conser-
vation laws, we refer to the monograph of Dafermos [8]. See also [12] and references therein.

Evolutionary SPDEs with Lévy noise has been the topic of interest of many authors lately,
and new results are emerging faster than ever before. However, until recently the study of bal-
ance laws driven by noise was largely limited to problems with Brownian noise. The interest in
problems with Lévy noise is rather recent and this article is a part of this developing story.

1.1. Stochastic balance laws driven by Brownian white noise

One can safely say that there is a satisfactory well-posedness theory for problems with Brow-
nian noise. If the noise is of additive nature, a change of variable reduces the equation into a
hyperbolic conservation law with random flux which could be analyzed with deterministic tech-
niques (cf. [14]) a la Kruzkov.

The case of multiplicative noise is more subtle, one could not apply a straightforward
KruZkov’s doubling method to get uniqueness. The first breakthrough on this topic was by Feng
and Nualart [11], who established uniqueness of entropy solution by recovering additional infor-
mation from the vanishing viscosity method. The existence was proven using stochastic version
of compensated compactness and it was valid for one spatial dimension. A number of authors
have contributed since then, and we mention the works of Debussche and Vovelle [9], Chen
et al. [6], Bauzet et al. [1] and Biswas and Majee [3]. We want to specifically mention the work
[6] of Chen et al., where well-posedness of entropy solution is established in L? N BV, via
BV framework. More importantly, the BV framework enables the authors to derive continuous
dependence estimate and, as a by product, one gets an explicit convergence rate for vanishing
viscosity method.

1.2. Stochastic balance laws driven by Lévy noise

There is a large body of literature (see the book [16] and references therein) on SPDEs driven
by Lévy noise, but the available theory is not general enough to cover (1.1). Roughly speaking,
the theory developed in [16] covers quasi-linear parabolic equations driven by Lévy noise and
typically the solutions of such equations enjoy regularizing effect. A comprehensive entropy
solution theory, within L?-solution framework, for (1.1) is made available by Biswas et al. [2]
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very recently. We also mention that Dong and Xu [10] established the global well-posedness of
strong, weak and mild solutions for one-dimensional viscous Burger’s equation driven by Poisson
process with Dirichlet boundary condition.

Irrespective of the smoothness of the initial data ug(x), due to the presence of nonlinear flux
term in equation (1.1), solutions to (1.1) are not necessarily smooth and weak solutions must
be sought. Before introducing the concept of weak solutions, we first assume that the filtered
probability space (Q, P, F, {]:t}zzo) satisfies the usual hypothesis. The notion of weak solution
is defined as follows:

Definition 1.1 (Weak solution). An L2(R%)-valued {F; : t > 0}-predictable stochastic process
u(t) = u(t, x) is called a stochastic weak solution of (1.1) if for all non-negative test functions
¥ € C2([0,T) x RY),

T
/ ¥ (0, 1)u(0, x) dx + // [ @ ou. 0+ Fu,0) - Va0 ddi
R4 R4 O
T
+ / / /n(u(r,x); DY (t,x)dx N(dz,dt) =0, P-as. (1.2)
t=0|z|>0 R4

However, it is well known that weak solutions may be discontinuous and they are not uniquely
determined by their initial data. Consequently, an entropy condition must be imposed to sin-
gle out the physically correct solution. The notion of entropy solution requires introduction of

entropy—entropy flux pairs.

Definition 1.2 (Entropy—entropy fux pair). An ordered pair (B, ¢) is called an entropy—entropy
flux pair if € C2(R) with >0, and ¢ = ({1, &2, ..., £g) : R~ R? is a vector field satisfying

¢'(ry=pB'(r)F'(r), forallr.
Moreover, an entropy—entropy flux pair (8, ¢) is called convex if 8”(-) > 0.
Now the notion of stochastic entropy solution could be defined as follows:

Definition 1.3 (Stochastic entropy solution). An L*>(R¢)-valued {F; : t > 0}-predictable stochas-
tic process u(t) = u(t, x) is called a stochastic entropy solution of (1.1) provided

(1) ForeachT >0, p=2,3,4,---,

sup E[||u(t, -)||§] <00,

0<t<T

(2) For all test functions 0 < ¢ € Ccl’z([O, 00) X Rd), and each convex entropy pair (8, ¢),

/w(O,x)ﬁ(u(O,X))dx+f {BzW(I,X)ﬁ(u(t,x))+§(u(t,X))-wa(t,X)}dxdt
R4

My

X
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T
[ [ (b +neni2) - pae 0w dr Kz an

r=01z|>0 Rg

+/ / (ﬂ(u(r,x)—l—n(u(r,x);z))—ﬁ(u(r,x))

7 |z|>0

—n@ur, x); 2)B (u(r, x))) Y (r, x)v(dz)drdx
>0 P-as.

The work in [2] establishes existence and uniqueness of entropy solution for the multidimen-
sional Cauchy problem (1.1).

1.3. Scope and outline of this paper

We are primarily motivated by [6] and wish to develop a continuous dependence theory for
stochastic entropy solution framework for (1.1). The rate of convergence for vanishing viscosity
approximation to (1.1) then follows easily. However, we use the technology from [6] and it
requires a priori BV bounds for the entropy solutions and this could be ensured provided the
initial data lies in ug € L”(R?) N BV(RY).

Finally, we turn our discussions to more general form of (1.1), namely when the function 7
has explicit dependency on the spatial position x as well. In view of results in [2], this problem
has unique entropy solution and, following [6], we derive a fractional BV estimate.

The remaining part of this paper is organized as follows: we collect all the assumptions needed
in the subsequent analysis, results for the regularized problem and finally state the main results
in Section 2. In Section 3, we prove uniform spatial BV estimate for the solution of vanish-
ing viscosity approximation of (1.1), and thereby establishing BV bounds for entropy solutions.
Section 4 deals with the continuous dependence estimate, while Section 5 deals with the error es-
timate. Finally, in Section 6, we establish a fractional BV estimate for a larger class of stochastic
balance laws.

2. Preliminaries

Throughout this paper we use C, K to denote generic constants; the actual values of C, K
may change from one line to the next during a calculation. The Euclidean norm on any R%-type
space is denoted by | - | and the semi-norm in BV(R?) is denoted by | |py(rd)-

Next, we collect all the basic assumptions on the data of the problem (1.1).

(A.1) The initial data ug(x) is a Np—12,. L” (R?)-valued Fy-measurable random variable satis-
fying

E[luoll} + luolly + luo vz | <00, forp=1,2,....

(A.2) Forevery k=1,2,...,d, the functions Fi(s) € C*(R), and Fi(s), F[(s) and F]'(s) have
at most polynomial growth in s.
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(A.3) There exist positive constants 0 < A* < 1 and C > 0, such that forall u,v € R; z € R

In(u;z) —n(; )l <A%u —vl(lz| AD, and  |n(u;2)| < C(1+Jul)(lz] A D.

(A.4) The Lévy measure v(dz) which has a possible singularity at z = 0, satisfies

/ (1na |z|2) v(dz) < +o0.

|z|>0

Remark 2.1. Note that we need the assumption (A.2) as a result of the requirement that the
entropy solutions satisfy L? bounds for all p > 2, which in turn forces us to choose initial data
satisfying (A.1). However, it is possible to get entropy solution for initial data in L?(R%) N
BV(RY), provided the given flux function is globally Lipschitz. The assumptions (A.1)—(A.4) are
natural in view of [2] and they collectively ensure existence and uniqueness of stochastic entropy
solution of (1.1).

To this end, for any given fixed ¢ > 0, we consider the viscous perturbation of (1.1)

due(t, x) + divy Fe (ue (1, x)) dt = / Ne(ue(t, x);2) N(dz, df) + €Ayucdt, 1 >0, x € R?,

|z|>0

u(0,x) =uc(0,x), x eRY, (2.1)

where u¢ (0, x) is a smooth approximation of initial data ug(x) € L? N BV(R?) such that

E[f e (0, 01" dx | < E[f o ()17 dx |

R Rd
and E[/Wue(o,x)ldx] 5E[/|Vu0(x)|dx].
R R

Let F¢, ne be “sufficiently smooth” approximations of F and 5 respectively, defined as in [2, Sub-
section 3.2]. Then F¢ and 7 satisfy the same properties as F' and n respectively (cf. (A.2)-(A.3))
and

|Fe(r) — F(r)| < Ce(1+|r|P?), for some pg € N,
[ne(u; 2) —n(u; 2)| < Ce (14 |ul)(1 Alz]). (2.2)

The existence of global smooth solutions for (2.1) is detailed in [2], and the following propo-
sition holds.

Proposition 2.1. Let the assumptions (A.1)—(A.4) hold and € > 0 be given. Then there exists a
unique C?(R%)-valued predictable process uc(t, -) which solves the initial value problem (2.1).
Moreover,
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(a) for positive integers p =2,3,---,and T >0

sup sup E[Hue(t,-)llg] <00, 2.3)

e>00<t<T
(b) For a function B € C*(R) with B, 8, B” having at most polynomial growth,

T
14
sup E ‘6//ﬂ”(ue(t,x))wxue(t,x)lzdxdt‘ <00, p=1,2,....:T>0.

€>0
t=0Rd

Remark 2.2. In view of Proposition 2.1 and assumption (A.1), it follows that, for each fixed
€ >0, Vu(t, x) is integrable. Moreover if E[fRd [V2u, (0, x)|dx] < +o00, then V2u, (¢, x) is
also integrable for fixed € > 0 and any finite time 7 > 0 (cf. [2, Section 3]).

Now we are in a position to state the main results of this article.

Main Theorem (Continuous dependence estimate). Let the assumptions (A.1), (A.2), (A.3), and
(A.4) hold for two given sets of data (ug, F, n) and (vy, G, o). Let u(t, x) be any entropy solution
of (1.1) with initial data uy(x) and v(s,y) be another entropy solution with initial data vy(y)
and satisfies

dv(s, y) +divyG(v(s, y))ds = / o((s,y); z)ﬁ(dz, ds). 2.4)

|z|>0

In addition, we assume that F”, F' — G’ € L™ and define

D(n,o) :=sup
ueR

. _ . 2
f (n(u; 2) — o (u; 2)) V(D).

1+ |ul?

|z|>0

Then there exists a constant Ct > 0, independent of |uo|gy ey and |vo|gywae), such that for a.e.
t>0,

E[/ |u(z,x) — v(t,x)|¢(x) dx]
R4

<Cr [(1 + Ellvolgyray]) VD1, )1l ()| oo ra)
+ E[|UO|BV(Rd)] ||F/ - G/||oot ||¢()||L°°(Rd)

+E[ [ 0w — sl dx] + Vida. a>||¢<~>||Ln<Rd>}, @5)

R¢
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where 0 < ¢ € Cg(Rd) such that |V¢(x)| < Cp(x) and |A¢(x)| < Cp(x) for some constant
C > 0. Moreover, a special choice of ¢ (x) with the above properties

when |x| < R,
when |x| > R,

17
P (x) = {e_c(|x|—R)’

leads to the following simplified result: for any R > 0, there exists a constant C ¥ > 0, indepen-
dent of |uo|gy(gray and |vo|gy(gra), such that for a.e. t > 0,

E[ / |u(t,x) — v(t,x)|dx]

[x|<R

=t [(1 + Ellvoly ) )V1D01. ) + 1 E[lv0lgyen ] I1F' = Gl

| f o (x) — vo(X)IdXH. 2.6)
Rd

Remark 2.3. The conditions that F”, F' — G’ € L could be avoided if we assume that u, v €
L®((0,T) x R x Q) for any time 7 > 0. In that case, an appropriate version of the main

theorem would be possible. Moreover, the quantity D(n, o) is well defined in view of (A.3) and
(A.4).

As a by product of the above theorem, we have the following corollary:

Main Corollary (Error estimate). Let the assumptions (A.1), (A.2), (A.3), and (A.4) hold and
let u(t, x) be any entropy solution of (1.1) with E[lu(t, ')|BV(Rd)] < E[|u0|BV(Rd)], fort > 0.
In addition, we assume that F" € L. Then, there exists a constant Ct > 0, independent of
|M0|BV(Rd>, such that for a.e. t >0

E[/ Juctt, 1) = ut, 1) dx] = Cr {2 (1 + Elluolgyen ) (1 +1)
R

+E[/ lu 0, x) —uo(x)|dx]}.

Ry

Therefore, if the initial error E[ fpq |ue(0,x) — uo(x)|dx] < Ce?, then E[ fga |ue(t,x) —

1 . L
u(t, x)| dx] < CeZ. In other words, the convergence rate is the same as deterministic problem
and hence optimal.

We finish this section by recalling a special class of entropy functions (,85 (r))
in [2, Section 2], satisfying

£-0°35 described

M
Ir| — Mi& < Pe(r) <|r| and |ﬂg’(r>|s§n{\r|§}, @7
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where My = supj, <, |Ir] = Bi(r)
we define

,and My = supy, < |8} (r)|. Finally, by dropping &, for 8 = ¢

F,f’(a,b)zfﬁ’(a—b)F,g(a)d(a), FP(a,b)=(F'(a,b), Ff(a,b), ..., F}(a, b)),
b

Fi(a, b) =sign(a — b)(Fy(a) — Fr(b)), F(a,b)=(Fi(a,b), F2(a,b),..., Fy(a,b)).
3. A priori estimates

In this section, we derive uniform spatial BV bound for the stochastic balance laws driven by
Lévy process given by (1.1) under the assumptions (A.1), (A.2), (A.3), and (A.4).

Theorem 3.1 (Spatial bounded variation). Let the assumptions (A.1), (A.2), (A.3), and (A.4)
hold. Furthermore, let u.(t, x) be a solution to the initial value problem (2.1). Then, for any time

t>0
E[f‘VuE(t,x)|dx] §E[/‘Vue(0,x)]dx] §E[/|Vuo(x)|dx].

R{ R{ R¢

Proof. Since u.(z, x) is a smooth solution of the initial value problem (2.1), by differentiating
(2.1) with respect to x;,, we find that dy, u. (¢, x) satisfies the stochastic partial differential equation
given by

d(ax,‘ué(tvx)) +diVX(Fg/(ué(tvx))axiué(tv-x)) dt: / 77;(”6([,)6);Z)axiue(t»x)ﬁ(dzﬁ dt)
|z]>0
+ €Ay (O, (1, X)) dt.

To proceed further, we apply Ito—Lévy formula to Bg (0x, ue (2, x)) to obtain

d(Be (Duytte (1, 1)) + dive (FL (e (6, 2)) B (1, 1)) BL By (1, 0)) d
1
= / / ﬁé(ue(t, X); Z)axiue(ta x)ﬁé (ax,-ue(t’ x)+0 ﬁé(ue(t, X); Z)axiue(t, x)) do N(dz, dt)
|2[>06=0

1
+f /(l—9)(7];(146;z)axiug)zﬁg(axiue(t,x)—}—9n;(ue(t,x);z)axiug(t,x))dQV(dz)dt
|z]>06=0

+ €Ay (B e (1, ) BL (O ue (1, ) . 3.1)

Since B is convex, we conclude that € Ay (O, uc (7, x)),Bg (05 ue (2, x)) < € ABg (dy,ue(r, x)) and
the martingale term has zero expectation. Moreover, by Remark 2.2, we see that for each fixed
e>0and 1 <i <d, Vo uc(t,x) is integrable. Let 0 < ¥ (x) € CSO(R"). Multiply (3.1) by ¢
and then integrate with respect to x we have
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[ [ selosuctt.0)pdx] < [ [ e(onuc0.0)va]
R4 Rd

t 1

+E[// / /(1—9)ﬁ§’<8x,ue(s,x)+9né(ue(s,X);z)axiue(s,X)>

R4 s=01z|>00=0

X (L (ue (s, x); 2) 0 e (s, x))zw(x) dov(dz)ds dx]

t
—i—E[/ / 8xiu€(s,x)w(x)ﬁé/(i?xiue(s,x))Vaxiue(s,x)-Fé’(ue(s,x))dsdx]

]ij s=0

t
—i—E[/ / Bxiue(s,x)ﬁé(axiué(s,x))VVf(x)-Fé(ué(s,x))dsdx]

Rz s=0

—i—eE[//ﬁs(ax,-ue(s,x))Al//(x)dsdx]

]R;f s=0

= £ [ Belosuc00)ymdi] 4 e )+ Ex6e.6) + e 5 4 Eie ). G2

R{
To estimate & (¢, &), we proceed as follows. Note that we can rewrite & (€, £) as
t 1
Ei1(e, &) = E[/ / / f (1— 9)h2/3g(a +9h)1//(x) dOv(dz)ds dx],
R4 s=01z|>06=0

where a = dy,uc(s, x) and h = 0 (ue(s, x); z)dx, ue (s, x). In view of the assumption (A.3), it is
easy to see that

B (@ +60h) < [dgucs, 0?1 A 2B @+ 0 h). (3.3)

Next we move on to find a suitable upper bound on azﬂg (a +6 h) Since B” is an even function,
without loss of generality we may assume that a > 0. Then by our assumption (A.3)

axiue(ta X) +9né(ue(t, x); Z)gx,'“e(ta x)>(1- )"*)axgué(t7x)v
for 6 € [0, 1]. In other words

0<a<1-=25""a+06n). (3.4)
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Combining (3.3) and (3.4) yields
R*Bla+0h) < (1A 12D =22 @+0h)*Bl@+60h) <CUAzP)E.

Since by assumption (A.4), f\zl>0(1 A 2% v(dz) < +00, we conclude that & (¢, &) > 0, as
& | 0. Next, a similar argument (as described in Chen et al. [6, Theorem 1]) reveals that

E2(€,8) >0, as£ | 0,

t
1€3(€,6)| + 1€4(€,§)| = C(e, T)//(Ivlﬂ(X)l+IAw(X)I)IE)x,-ue(S,X)Idde- (3.5

R4 0

Finally, keeping in mind (2.7), we combine the findings above to let £ — 0 in (3.2) and conclude

E[/|3xiu6(t,x)|1p(x)dx] 5E[/|8xiu5(0,x)|¢(x)dx]
R R4

t
e [ [ (Imvwi+iapw)ou.oldrds 66

RY 0

We replace v in (3.6) by the standard smooth cut-off function of By (0) with support inside
By (0) and let N go to oo and apply dominated convergence. The end result is our desired
conclusion, i.e.

E[/Dxiue(t,x)‘dx]§E[/|8xiue(0,x)‘dx]. 0

Ry Ry

An important and immediate corollary of the uniform spatial BV estimate is the existence of
BV bounds for the entropy solution of (1.1). We have the following theorem.

Theorem 3.2 (BV entropy solution). Suppose that the assumptions (A.2), (A.3), and (A.4) hold.
Then there exists a unique entropy solution of (1.1) with initial data satisfying assumption (A.1)
such that

E[Iu(r, .)|BV(Rd)] < E[|uo|BV(Rd)], foranyt > 0. 3.7)

Proof. We take advantage of the well-posedness results from [2] and claim that the sequence
{uc(t, )} converges, in the sense of Young measures, to the unique L”(]Rd)—valued entropy so-
lution u(¢, -). In view of the uniform BV estimate in Theorem 3.1, by passing to the limit, we
conclude (3.7). O
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4. Proof of the Main Theorem

The average L'-contraction principle (cf. [2]) could be viewed as continuous dependence on
the initial data for problems of type (1.1). A continuous dependence result involving the flux
function and the noise coefficient is a subtle one and the proof requires the regularized problem:

dve(s,y) +divyGe(ve(s, y)) ds = f|z‘>0 0e (Ve (s, ¥); )N (dz, ds) + € Ayyve(s, y) ds,
(s,y) € Ir, 4.1)
ve(0,y) =v5(y), yeRY;

where (vf), o¢, G¢) are regularized version of (vg, o, G) satisfying the conditions in (2.2). In
view of Theorem 3.2, we conclude that v (s, y) converges, as Young measures, to the unique
BV-entropy solution v(s, y) of (2.4) with initial data vy(y). Let u(¢, -) be the unique BV-entropy
solution of (1.1) with initial data u((x). Moreover, assume that the assumptions (A.1)—(A.4) hold
for both sets of given functions (vg, G, o) and (ug, F, n).

We estimate the L!-norm of u — v and the proof is done by adapting the method of “doubling
of variables” to the stochastic case as laid out in [6]. Likewise in [2], one needs to directly com-
pare one entropy solution to the viscous approximation of the other. This approach is somewhat
different from the deterministic approach (cf. [4,7,5,13]), where one can directly compare two
entropy solutions.

To begin with, let p and o be the standard mollifiers on R and R? respectively such that
supp(p) C [—1,0) and supp(o) = B1(0). For § > 0 and §p > 0, let ps,(r) = %p(é) and gs(x) =

5%,@(%). For a nonnegative test function ¢ € c§~2([o, 00) x R?) with [V (1, x)| < C ¥ (¢, x),
|[Ay(t, x)] < C (¢, x) and two positive constants §, 8¢, define

$s5.80 (1, x, 8, y) = psy (t = 5)os(x — Y)Y (s, y). 4.2)

Observe that ps,(t —s) # 0 only if s — 8o <t <'s, and therefore ¢;s,(t, x; s, y) = 0 outside
s—080<t<s.

Furthermore, let ¢ be the standard symmetric nonnegative mollifier on R with support in
[—1,1] and ¢;(r) = %g(%) for [ > 0. We now write the entropy inequality for u(¢, x), based on

the entropy pair (8(- — k), F B(.,k)), then multiply by ¢;(ve(s, y) — k) and integrate. The result
is

0 < E[//fﬂ(u(o,x)—k)¢3,50(0,x,s,y)gl(ve(s,y)—k)dkdxdyds]

7 RE Ry

+E[/_//ﬂ(u(t’x)_k)af‘f’&éo(f’xv»‘,Y)S'I(Ue(S,y)—k)dkdxdtdyds]

M7 7 Ry

+ E[/ / / / <ﬂ(u(t,x) +nu(t, x); z) — k) — Bu(t, x) —k))

HT Rk HT |Z‘>O

X 5.6, (1. X, 5, ¥) 1(ve (s, y) — k) N(dz, dt) dx dk dy ds]
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T
+E[// / //(ﬂ(”(fvx)Jrn(u(t,x);z)—k)—ﬁ(u(r,x)_k)

M7 1=0 |z|>0 Rd Ry
= (1, 30; DB W, ) = K) ). 1, 55, 9)

x ¢1(ve (s, y) — k) dk dx v(dz) dt dy ds]

+E|://[Fﬁ(u(t’x)’k)'vx@ﬁ(x_y)lﬂ(s,y)pso(t_s)

Iy 7 R

x 1(ve(s, y) — k) dk dx dt dy ds]

=h+hLh+L+ L+ I 43

We now apply the Itd—Lévy formula to (4.1) and multiply with test function ¢s, s and
G/ (u(t, x) — k) and integrate. The result is

OSE[////3(”6(0’”—k)%,ao(hx,O,y)gz(u(t,x)—k)dkdxdydt]

M7 R4 Ry

—i—E[///ﬁ(vg(s,y)—k)85¢s,50(t,x,s,y)gl(u(t,x)—k)dkdydsdxdt]

Iy 1 Ry

+E[////(IB(UG(S,y)+O'E(Ue(S,y);Z)—k)—ﬁ(vé(s,y)_k)>

M7 M7 |z]|>0 R

X B5.,50 (1, %, 5, V)51 (u(t, x) — k) dk N (dz, ds) dy dx dt]

T
+E[// ///(,B(Ue(s,)’)-i-ﬁe(ve(s,y);z)—k)_lg(ve(&y)_k)

7 s=0|z|>0 Rt)i Rg
= 0 (Ue(s, V) DB (els, ¥) = 0 ) 3y (1,5 5. 9)
X c(u(t, x) — k) dkdy v(dz) ds dx dt]

+E[///Gfﬂ(vf(s’y)’k)'va5(x_)’)llf(S,y)p50(t—s)

I I Ry
x ¢ (u(t, x) — k) dk dx dtdyds]
+E[///GE(UE(s’y)’k)‘vyl'[/(s’y)QS(x_y),O,SO(l‘—S)
Iy 7 Ry

x c(u(t, x) — k) dk dx dt dy ds]
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—et[ [ [ [ 805007060 980 0.5.5.9)
M7 I Ry

X Gi(u(t, x) — k) dkdyds dx dt (4.4)

where G (a, b) = fab B'(r — b)G.(r)dr. It follows by direct computations that there is p € N
such that

|GE(a,b) — GP(a,b)| < Ce(1 +[al*? + [bI*P).
In view of the uniform moment estimates, it follows from (4.4) that

0= E[/f/ﬂ(vf(o’y)_k)¢3»50(tvxa0»y)s‘l(u(t,x)—k)dkdxdydt]

r ]Rfé R

+E[ff/ﬂ(”f(s’Y)—k)3s¢a,so(t,x,s,y)gz(u(t,x)—k)dkdydsdxdt]

M7y Nr Ry

—i—E[// / /(ﬂ(ve(s,y)—i-ae(ve(s,y);z)_k)_ﬂ(ve(s’y)_k))

M7 N7 |z|>0 Ry

X 5.5 (1. X, 5. )i (u(t, x) — k) dk N (dz, ds) dy dx dt]

T
+E|:// ///(ﬂ(vf(s’y)'FUe(UG(S,y);Z)—k)—ﬂ(ve(s’y)_k)

M7 s=0 |Z‘>O]Rf\{ Ry
— 0 (Ve (s, ¥); 2)B (Ve (s, y) — k))¢3,so(t, x;8, Yo u(t,x) —k)dkdyv(dz)dsdx dt]

+E[///Gﬂ(vf(s’Y)vk)'VyQa(x—y)tlf(s,y)pao(t—s)
M7 N7 Ry
X i (u(t, x) — k) dkdx dt dyds]
+E[/f/Gﬁ(”e(S’Y)»k)'Vylﬂ(s,y)Qa(x—y)pgo(t—s)
Iy 7 Ry
X i (u(t, x) — k) dkdx dt dyds]
_EE[///ﬁ/(vf(s’y)_k)vyve(S’Y)'Vy¢6,50§1(u(l,x)—k)dkdydsdxdt]
M7 Ir Ry

+C(B, w)g

€
=t Ji Dk s+ Jact s+ Jo+ 1+ CB )5, @.5)
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where C (B, ¥) is a constant depending only on 8 and . Our aim is to add (4.3) and (4.5),
and pass to the limits with respect to the various parameters involved. We do this by claiming
a series of lemmas and proofs of these assertions follow from [2, Section 5] modulo cosmetic

changes.

Lemma 4.1. It holds that J; = 0 and

timtim (11+91) = £[ [ [ (0.0 = 00,9090 st = avay).
R{ R

tim lim (1> + ) = E[n/ [ﬁ(ve (5. 3) = (5. X)) ¥ (5. y) 03 — y) dy e ds
T RS

Lemma 4.2. The following hold:

T
lmhmG:EL///F%MJLw@w)%w@—wWGJMm@M} (4.6)

[—08p—0
=0 Rd RY
T
im tim Js = £[ [ [ [ 67 wets. 00 u6s.0) - V0565 = ) s ndrdyds], @)
[—0680—0
sORd R

im tim Js = E[ [ [ 6P wets. 91300 9,05, 9stx ~ ) dxdyds],
[—0389p—0
M7 Re

Thanks to the uniform spatial BV estimate in Theorem 3.1, we conclude that

51 = €N el E[ [ [ 19,0005, 9019, 105, mstx = wldxdy as]|

7 Rd

€
§C3Eﬂmwwwﬂ. (4.8)

Lemma 4.3. It holds that

1
lim lim J4 = E[ f f / / (11— )»),B”(ve(s, y) —u(s, x) + Aoec(ve (s, y); Z))
[—080—0

7 R |z|>021=0

X [0c (ve (s, 1): DY (5, Y)es(x — ) davdDydxdyds|,  @49)
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lim lim I, = E // / /(1 MB" (u(s, x) — ve(s, y) + An(u(s, x); 2))

[—0 50—)
Ir Rd |z]>01=0

X (s, %) DY (5, yos(xr = y) drv(dz) dxdyds|. (10)
Finally, we consider the stochastic term I3 + J3;

Lemma 4.4. It holds that J3 =0 and

im tim 1= E[ [ [ [ (p@t0 + 106001 = 09 = 000520

[—08p—0
M7 Re [2[>0

— Bu(r, x) = ve(r, y) — 0 (Ve (r, y); 2)) + B(u(r, x) — ve(r, y))

- ﬂ(u(r,x) +nu(r, x); z2) — ve(r, y)))w(r, y)os(x —y)v(dz)dxdy dr].

To proceed further, we combine Lemma 4.4 and Lemma 4.3 and conclude that

lim lim ((1% +J3) + (s + J) )

[—0

—e[ [ [ ([ {0~ vt + nwtnio) - 0wt vi2)

My RY  |2f>0

— Bu(t, x) —ve(t, y)) — (n(u(t,x): 2) — 0 (ve (2, y): 2))

x B (u(t, x) = ve(t, 1) | (D)) (e, v)os(x = ) dxdy ]
/ / /// (0 2) = v ) + p (1w 2): 2) = 0w, ); 2))
r=0z|>0R¢ R¢ p=0

x (1= p)|nu(r,x); 2) — oc (Ve (r, y); z)!zllf(r, yos(x —y)dpdxdyv(dz) dr]- (4.11)

We are now in a position to add (4.3) and (4.5) and pass to the limits lzifg gnﬂ) . In what follows,
0
invoking Lemma 4.1, Lemma 4.2 and the expressions (4.8) and (4.11), we arrive at

0 £[ [ [ B0~ w00 0.0 - y)dx ]
R¢ R

E[//ﬂ(ve(s,y)—u(s,x))asl/f(s,y)ga(x—y)dydde]

My ]R;i
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—E[//Vy-{Gﬁ(ve(s,y),u(s,x))—Fﬁ(u(s,x),ve(s,y))}

My ]Rf{.
X Y (s, y)os(x — y)dydx ds]

+E[//Fﬁ(u(s,x),v€(s,y))-Vyw(s,y)g(s(x—y)dydxds]

d
fr R¢

+ C(Eflvolpyan] +1)5

1

T
+E[/ ////ﬂ//<u(r,x)—ve(r,y)-i-p(”l(u(r,x);z)—ae(vé(r,y);z)))

r=01z|>0 Rt}{ R4 p=0

x (1 — p)‘n(u(r,x); 7) — o (Ve (1, y); z)IZW(r, y)os(x —y)dpdxdyv(dz) dr]
€

; 4.12)

= A+ Ay As+ Ay + As + C(E[|UO|BV(Rd)] + 1)

Again, our aim is to estimate all the above terms suitably. First observe that, since B¢ (r) < |r|,
we obtain

it < E[ [ [ Joe©.5) = a0 00,3 0506 = avay . @13)

R{ RY
Next, following computations as in Chen et al. [6, Section 5], it can be shown that

T

Al = E{jolgyizo | (Va8 1F s+ 11F = Glloc) [ 1106y ds. 14
s=0

Note that [V (r, x)| < C ¥ (t, x) and |FP(a,b)| <||F’||scla — b| for any a, b € R. Therefore,
we conclude

T

|A4|§C||F/||L°°E[/ / e (1(5, %) = ve(s, 1)) (5, Y)@s (x — y) dx dy ds
0 RIxRY
T
+CM1||F/||Loosf||w<s,->||Lw<Rd)ds. (4.15)

s=0
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We now define a := u(r, x) — ve(r, y) and b := n(u(r, x); z) — oc (v (r, ¥); 2), and observe

As = f / // /(1—,0)192 "(a+pb)Y(r, y)Qa(x—y)dpdxdyV(dz)dr]

r=0 \z|>0Rd Rd

/////In(u(rx) 2) — o u(r,x): ) p"(a+ pb)

0 lzI>0Rd RY p=

| /\

XU (r,¥) 03(x = ) dpdx dy v(d2)dr |

+cE| / ////}a(u(r 2):2) — 0 el ): D B (a+ pb)

r= 0|2\>0Rd R4 p

X Y (r, y) 05 (x — y) dp dx dy v(dz) dr]

+CE / / // / }O'(Ue(r y) Z)—Ue(ve(r y) Z)‘ ,3”(614-,0[9)
r=i 0|z\>ORdep
X Y (r,y) 0s(x — y)dpdxdyv(dz) dr]

= AL+ A2+ AL (4.16)

|n(u? Z) - G(”’ Z)|2

We now recall that D(n, o) = sup v(dz). It is easy to see that

ek [ Ju?
|z|>0
CD ¢
A< == (" ZE[ [ [ [asweorve ot -ndvaxar]
r=0Rd RY
CD
< R /Hw(s S ds+/||w(r Yiodr). @17)

Next, we move on to estimate the term Ag. Observe that, by (A.3),

|0 (u(r, x); 2) — 0 (ve(r, y); DB (@ + pb) < (1 A [z1P) a® B"(a + pb). (4.18)

We want to find an upper bound on a? 8”(a + p b). As " is non-negative and symmetric around
zero, without loss of generality, we may assume that @ > 0. Then, by our assumption (A.3), we
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conclude that

[n@u(r, x); 2) — 0e (Ve (r, ¥); 2)| < [n(u(r, x); 2) — o (u(r, x); 2)| + 1*a + Ce(1 + |vel),

which implies that a + pb > —|n(u(r, x); 2) — o (u(r, x); 2)| — Ce(1 + |ve|) + (1 — A*)a for
p €10, 1]. In other words

0=a=(=2"a+pb+ n0erx: ) = oW x| +Ce(l +lech]. @19)
Now, we shall make use of (4.19) in (4.18), to obtain

|0 (u(r, x); 2) — 0 (ve (1, y); D Bt (a+ pb)

In@u(r,x); 2) — o u(r, x); 2)|° N €2 (1+ lvel)

sc(s+ : :

)(1 AlzP).

This helps us to conclude

’Az <CE|:/ / // 1+| vel ))(1/\|1|2)1ﬂ(r,y)93(x—y)dxdym(dz)dr:|

" |z|>0R? R¢

T
DO,
+$ff/<1+|u<r,x>|2>w(r,y)pa<x—y)dxdydr

0 RY R

T
2 CD
SC(§+%)/II¢(S, -)||Loo<Rd>ch+M /Hw(s Mz ds+/||w Moo dr).

s=0
(4.20)
Next, we move on to estimate the term Ag. In fact, it follows easily that
T
e
= g 1Y (s, ) |Loo ds. 4.21)
0

‘We now make use of the estimates (4.17), (4.20) and (4.21). Then it is evident from (4.16) that

CD(n,
wuﬁ(/nw(s >||L1ds+f||w<s >||oodr)

2
+C(s+%> / 1. I oo gy ds. (4.22)

s=0
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We now use (4.13)—(4.15) and (4.22) in (4.12) and apply {Siirol h?(} to conclude
€

0< E[/ |v0(x) — u(0, )| (0, x)dx]

R

+ E[luolgy e | (M2 1F oo + 11 = Glloe) [ 1965, Ml e ey ds

s

Lo—

T

+C||F/||LooE[//,Bg(v(s,x)—u(s,x))w(s,x)dxds]

s=0 Rz

T
+ C(M||F'||L +1)& f (s, Nl poorayds
s=0

T T

CD(n,

+%(f||1/f<s,~>||L1ds+f||w<r, Moo dr)
0 0

+ E[/,Bg(u(s,x) — (s, X)) (s, x) dx ds]. (4.23)
My

For a given function ¢ € C?(Rd) satisfying |V¢ (x)| < Co(x), |Ad(x)| < Co(x), we choose
Y(t,x)=h(t)p(x) as per [2, Proof of Theorem 2.2] and apply a weaker version of Grownwall’s
inequality to obtain

E[fﬂg(u(t,x) — 01, %)) (x) dx |
R4
< eI [ [ funo) — . 0] 0 dx] + M £SOl
i
¥ CeC”F/”oc’{(Ml 1 s+ 1) 9 Ol gy 1

+ E[ ol gyt | (M2 1 oo 11 = Glloo 19O oy

CtD(n, o)
e ([ ||¢||Loo)}, (4.24)

for almost every ¢ > 0. We now simply choose & = /tD(n, o) in (4.24) to conclude (2.5) for a.e.
¢t > 0 and thereby completing the proof.
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5. Proof of the Main Corollary

It is already known that the vanishing viscosity solutions converge (in an appropriate sense)
to the unique entropy solution of the stochastic conservation law. However, the nature of such
convergence described by a rate of convergence is not available. As a by product of the Main
Theorem, we explicitly obtain the rate of convergence of vanishing viscosity solutions to the
unique BV-entropy solution of the underlying problem (1.1).

By similar arguments as in the proof of the Main Theorem (cf. Section 4), we arrive at

B[ [ [ luett. )~ utt.wlp estx = yyaxay]

RY RY

SeClIF/IILoot[EI://|u€(0, y)—uo(x)|¢(y)Q5(x—y)dxdy]+C(1+E[|u0|BV(Rd)])§}

R{ R
2
+ €It (14 B wolpvezn]JE 19Oy + 5 19Ol 1
+ CE ()l oo rey- 5.1

First sending ¢ — xpa, and then choosing £ =€ in (5.1) yields
E[/}ue(t,y)—u(t,y)‘dy] 5eC”F’”L°°’{E[/ ’ue(O,y)—uo(y)’dy]
Rff, R?
€
+c(1+ E[|u0|BV(Rd)]>§ +8 E[luol v}

We choose § = e% in (5.2), and conclude that, for a.e. t > 0,

E[/ e, ) = e, 1) dx] = (T2 (1+ Elluolpy e )1 +1)
R¢

n E[/ (0, x) — uo(x)|dx]},

R{
for some constant C(7T") > 0, independent of E [|uo| BV(Rd)]. This completes the proof.
6. Fractional BV estimates

In this section, we focus on a more general form of (1.1), namely the problem
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{du(t,x) +dive F(u(t, x)di = [ _on(x,u(t,x);2) Ndz,dr),  xeTlr,
d

(6.1)
u(0, x) = up(x), x e R4,

Notably, the jump amplitude 1 depends explicitly on the spatial position x and the following
compatibility conditions are needed.

(B.1) There exist positive constants K > 0 and A* € [0, 1) such that

n(x,u;2) —n(y,v;2)| < A |lu —v|+ K|x —yD(|z| A D),

forallu,velR; zek; x,yERd.

(B.2) There exists a non-negative function g(x) € LOO(Rd) N L?(R?) such that
InCx,u;2)] <g(x)( + lul)(z| A1), forall (x,u,z)e R? x R x R.

The uniform BV bound in Theorem 3.1 is no longer available for the problem (6.1) and, as
a result, our method to have continuous dependence estimate for (6.1) does not apply. However,
one can work along the path laid out in [6] and obtain a fractional BV estimate for (6.1) and it
involves obtaining uniform fractional BV estimate for the viscous problem

due(t,x) +divy Fe(ue(t, x))dt = / Ne(xX, ue(t, x); 2)N(dz, dt) + € Agyuc(t, x)dt,  (6.2)

|z|>0

where Fe, n. satisfy (2.2). The conclusions of Proposition 2.1 is still valid for (6.2). We now
establish a uniform fractional BV estimation of solutions of (6.2).

Theorem 6.1 (Fractional BV estimate). Let the assumptions (A.1), (A.2), (B.1), (B.2), and (A.4)
hold. Let u¢ be a solution of (6.2) with the initial data uo(x) belongs to the Besov space B{foo (RY)

for some u € (%, 1). Moreover, we assume that FE” € L. Then, for fixed T > 0 and R > 0, there
exit constants C(T, R) and r € (0, 1), independent of €, such that forany 0 <t < T,

sup E[ / lue(t, x + ) — uc(t,x))| dx] <C(T.R)¥.
lyl<é CBx

Proof. Let ¢ (x) € CS(Rd) be a test function such that |V¢ (x)] < Co(x) and |A¢ (x)| < Co(x)
for some constant C > 0. Moreover, let (Js)s be a sequence of standard mollifiers in R4, Define
Ys(x,y) =Js (*52) ¢ (#) Following Chen et al. [6, Theorem 7], we subtract two solutions
uc(t,x), uc(t,y) of (6.2), and apply It6-Lévy formula to the resulting equation to obtain

B [ [ beluctton —uete.y)wste. vy dxay]

RY RY

—E[//ﬂs(ue(O,X)—ue(O, y))l/fa(x,y)dxdy]

R4 RY
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t

(@ +61Flnte) [ E[ [ [lucts.n - uctsnlo 5 Hn 2 axay]as
s=0 Rdei
t
+CIIF 1t E] e, = e, [N, 5 (S D dx dy as
s=0Rd RY

/ [/ /ﬂg Ue(r, X) = e, ) + p (e (e ()3 2) = 1 (v, e, ): 2) )

r=01z|>0Rd RY p=
2
X |ne(x, ue(r,x);2) — ne(y, ue(r, y); )| ws(x, y)dpdx dy v(dz) dr]. (6.3)
Next, we mainly focus on the last term of (6.3). Rest of the terms can be treated as in Chen et al.

[6, Theorem 7]. In what follows, we first let a = u. (f, x) — ue(t, y) and b = ne (x, ue (¢, x); z) —
Ne(y, ue(t, y); z). Observe that

b By (a+ pb) = (ne(x, uc(t, ); 2) = ne(y, uc(t, y); 2))* B (a + p b)
< (lue.0) = uet. )P + K2 =y )AL A 212 B+ pb)
= <a2+K2|x—y|2) Bl(a+pb) (1 AlzP). (6.4)
As before (cf. (3.4)), one can use assumption (B.1) on n(x, u; z) to conclude
0<a<(l—1"""(a+pb+Klx—yl).

In view of (6.4), we have

b*Bl(a+pb) < (1 -1~ 2(a+pb+1<|x—y|) Bl (a+ pb) (|zI> A 1)

K|x —
+g(|z|2/\l)

< [0 -ay2ce + ckan T2k A,

and hence

——

i/

r=01z/>0R¢ RY p=0

([ [ [[lamsriessennti)

r=01z/>0Rd R

V2B (a + pb)Ys(x, y)dpdx dy v(dz)dr]
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x (1Z1% A Ds(x, y) dx dy v(dz) dr]

2

8
<&+ ) IOl (6.5)

Finally, keeping in mind the estimate (6.5), a simple application of the lemma [6, Lemma 2]
gives

lyl<é

sup E[/ |u€(t,x +y)— ue(t,x)|¢(x)dx]
R4

<C(T) 5r|:<E|:||u0||B{‘OO(Rd):| + 1>||¢||L°°(]Rd) + ||¢||L1(Rd):|
—}—Cz(erl:”ue(tv')||L'(Rd)i|'

To proceed further, let Kg = {x : |x| < R}. Choose ¢ € C?O(Rd) such that ¢(x) =1 on Kg.
Then, forr < %, we have

sup E|: [ |u5(t,x+y)—u€(t,x)|dx:| <C(T,R)§",
lyl=é
R

which completes the proof. O

In view of the well-posedness results from [2], the L”-valued entropy solution of (6.1) satisfies
the fractional BV estimate in Theorem 6.1. In other words, we have the following theorem.

Theorem 6.2. Suppose that the assumptions (A.2), (A.3), (A.4), (B.1), and (B.2) hold and the

initial data ug belong to the Besov space Bﬁw(Rd) for some | € (%, 1) and E[IIMOIIi],(Rd) +
”“0||[L?2(Rd)] < oo for p=1,2,---. Then the problem (6.1) admits an entropy solution u(t, )
such that

sup E[||u(t, -)IIZP(Rd)] <oo, forp=1,2,---.
0<t<T

Moreover, there exist constants C %e and r € (0, %) such that, for almost every 0 <t < T,

sup E|:/|u(t,x+y)—u(t,x)|dx:| gc;"y.
Bpg

lyl=<é
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